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Abstract

Measurement uncertainty (MU) estimation is not prescribed by current di-

rect shear tests (DST) standards, even though MU estimation is a powerful tool

for risk mitigation in geotechnics. The hybrid Ordinary Least-Squares (OLS)

approach is advanced to overcome this shortcoming, denoted as HOLS. OLS,

Iterative Weighted Least Square (IWLS) and Weighted Line of Organic Corre-

lation (WLOC) approaches are proven not suitable for MU estimation in DST

practice, as OLS largely overestimates MUs, while IWLS and WLOC strongly

underestimate MUs. HOLS provided more reliable MUs than OLS, IWLS and

WLOC. HOLS was implemented with a matrix-based algorithm and it was val-

idated by inter-comparison between published data and its outputs. The worst

case strategy is proposed in case of feeble knowledge about errors correlations.

Emphasis is given to situations where uncertainty must be used to evaluate the

soil reinforcement rate with polyester fibers. HOLS is suitable to many similar

metrological cases.
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1. Introduction

Shear strength is responsible for the soil ability to withstand applied loads

and it is regarded as the most important engineering property of soil [1, 2, 3].

The knowledge of the shear strength parameters is essential for the analysis

of the subsoil bearing capacity, slope stability and earth pressure [1, 2, 3, 4].5

The shear strength parameters of a certain type of soil in an area varies as the

soil structure becomes more complex and its deformation properties and shear

strengths depend on many factors (mineral composition, water content, particle

size, loading speed etc. [4, 5, 6, 7]. Direct shear tests (DST) and triaxial tests

are the most appropriate for determination of the soil shear strength parameter10

[5, 6, 7, 8, 9, 10, 11]. Nevertheless, the DST is mainly performed as its perfor-

mance/cost ratio is superior to the triaxial one [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

The laboratory DST practice ignores the measurement uncertainty (MU)

that could be assigned to the outcomes [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],

even though the standards EN ISO/CEI 17025 [17] and ISO/CEI Guide 98-315

[18] standards specify that every numerical output of a measurement process

is affected by an uncertainty in a certain range. In the view of these stan-

dards, the quality of a numeric measurement result gets higher as its assigned

MU value gets smaller. The referential standards [17, 18] emphasize that the

measurement results cannot be compared to specified values or among them20

without taking into account their MUs. Furthermore, there are many soil im-

provement techniques in which various materials are added to soil to increase

the soil shear strength parameters [8, 9, 19, 20, 21]. In these cases, it is neces-

sary to find the optimal amount of the reinforcing materials, so a comparison of

the improvement rates is carried out. In many cases, the improvement rate can25

be smaller than the MU value; however, without a proper MU estimation it is
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quite groundless to assess the optimal amount of the materials. In this regard,

the authors in [19] used DST to evaluate the improvement of the angle of in-

ternal friction (φ) of sand reinforced with Polypropylene fibers. The values of φ

introduced by the authors are 42.3◦ (without fibers), 42.1◦ (0.1% fibers), 41.8◦30

(0.25% fibers), 40.6◦ (0.5% fibers) and 40.4◦ (1% fibers) which probably will be

smaller than their assigned MUs. Authors in [20] introduce the improvement of

kaolin slurry treated with cement, where in Fig. 8 of the paper one can see that

improvement of φ and cohesion (c) between mixture with 5% and 7.5% cement

content is about 1◦ and 3kPa, respectively. Therefore, determination of MU35

can be useful since such small changes can be smaller than their assigned MUs.

Authors in [21] introduce comparative measurement of compaction impact of

clay stabilized with cement, peat ash and silica sand where parameters of shear

strength were obtained by DST in accordance to the standard of ASTM D3080.

In Tab. 3 of the paper one can see that improvement rate of the angle of internal40

friction and cohesion is very small, often about 1◦−2◦ and 1kPa–2kPa. Again,

the estimation of MU can be useful since such small changes can be smaller

than MU.

The actual DST practice across the EU is not fully harmonized. Thus, in

Romania, the DST standard method is specified in the standard STAS 8942/2-45

82 [14], which came into force about 40 years ago. This standard does not

address the problem of MU estimation or of the validity of the measurement

outcomes.

The Slovakian standard STN 73 1030:1988 [22], prescribes 4 regression points

for a better estimation of the calibration line slope (β), of the φ and of the50

regression line intercept (c) values, based on the OLS approach. In the case

of negative c value, the regression line is forced to pass through the (0, 0)

point. This standard does not claim to estimate MU in DST, but it imposes a

lower limit of the regression coefficient ra = 0.95 for a 5% significance level and

ra = 0.9588, for 1% significance level. In the case of r ≤ ra it is necessary to55

verify whether there is any reason to exclude some specimens from evaluation.

If after verification the condition r ≥ ra is still not fulfilled, it is necessary to
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find another fit line, which would better fit the effective shear strength.

The Polish standard PN-88/B-04481 [23] prescribes 5 regression points for

the estimation of the shear strength parameters. Also, this standard provides60

formulae for experimental standard deviations of β, c and, subsequently, φ.

According to this standard, one should check whether the deviation of the ex-

perimental point differs more than 25% from the calculated one. If yes, it is

necessary to exclude that particular observation from evaluation and to use the

next one to ensure that the conditions are fulfilled. The PN-88/B-04481 stan-65

dard can be considered the precursor of the modern trend in DST practice, since

it addresses the standard deviation of the DST results and draws attention to

the reliability of DST results for the geotechnical design.

The ASTM D3080 [15] avoids addressing the uncertainty problem of the

DST results. It specifies that test data on precision are not presented due to70

the nature of the soil or rock, or both materials tested by this standard [...], it is

either not feasible or too costly to produce multiple specimens that have uniform

physical properties. Any variation observed in the data is just as likely to be due

to specimen variation as to operator or laboratory testing variation.

Even the latest standard ISO 17892-10:2018 [16] does not address in an75

explicit manner the MU estimation in DST.

Though the DST standards do not require MU estimation, the problem of

MU estimation in DST practice was considered by many geotechnical special-

ists, being aware of the great importance of MU for decision making in their

professional fields [8, 9, 11, 24, 25]. In this regard, the proper MU estimation80

for each soil type has to be a permanent concern for each DST laboratory,

as neglecting MU or underestimating it can increase the risk of an improper

decision regarding subsoil bearing capacity, slope stability, earth pressure, soil

reinforcing applications etc.

All the DST standards addressed above [14, 15, 16, 22, 23] have in common85

the classical OLS for estimating the parameter of the calibration line (β, φ, c).

OLS makes use of a set of points in a Cartesian system i.e. (xi, yi), i = 1...n,

that are supposed to be in a linear relation yi = a + bxi. OLS is applicable
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when all yi values are equally uncertain (u(y1) = u(y2) = ... = u(yn)) and the

uncertainties of xi values are negligible [26]. When uncertainties of yi values are90

not equal, but uncertainties of xi values are negligible the literature recommends

the Weighted Least-Squares (WLS) method [24, 25, 26, 27]. If both sets of xi

and yi values have non-negligible uncertainties, then OLS is recommended to

be replaced by other linear regression method [26, 27, 28, 29, 30, 31, 32, 33].

ISO/TS 28037:2010 [34] was issued to provide valuable solutions when one95

must perform linear calibration with uncertainties in both coordinates. This

standard relies on the Iterative Weighted Least Square (IWLS) method based

mainly on the works of D. York [27, 28, 33]. The IWLS method minimizes the

sum of weighted distances between the line and the observed points (Xi, Yi),

i = 1...n. The work of York et al. [33] provides the relations for the DST100

parameters in case of correlated errors of Xi and Yi values. In 2017, C. Delmotte

[26] proved the better adequacy of the Weighted Line of Organic Correlation

(WLOC) for airtightness measurements. One advantage of WLOC is that it

minimizes the errors in both X and Y directions. Another advantage of WLOC

is that it provides analytical solutions for the slope and the intercept.105

The actual state of the art procedure in DST practice can be summarized

as follows:

(i) DST standards [14, 15, 16, 22, 23] prescribe OSL for β and c estimation;

(ii) The MU estimation is not issued by these standards, but the geotechnical

applications and researches need MUs values assigned to DST outcomes;110

(iii) The uncertainty budgets assigned to DST measurands are larger and they

imply treating errors in both linear regression variables.

The application of the likelihood method to heteroscedastic correlated errors

in both regression variables is the natural solution to solve the MU estimation of

DST outcomes, but this approach is complicated and does not yield analytical115

solution for the β and c measurands. Consequently, the evaluation of MUs of

β and c implies an iterative computation procedure, hence it is unaffordable to

many DST laboratory operators.
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The EUROLAB Technical Report 1/2006 [35] suggests that the uncertainties

related to parameters β and c can be estimated using uncertainties of both120

variables for the case of OLS calibration. Based on EUROLAB Technical Report

1, Nguyen et al. [7, 8, 9], have estimated the uncertainties of the calibration

parameters using a correlated uncertainty approach. The correlation coefficients

were considered constant for all coordinate pairs and equal to the correlation

coefficient value assigned to the calibration line. The appliance of OLS to the125

case of linear regression with error in both coordinates apparently contradicts

the consecrated scientific approach based on IWLS or WLOC [26, 27, 28, 29,

30, 31, 32, 33, 34].

On the other hand, the DST has at least 3 peculiarities:

(i) destructive test;130

(ii) large uncertainty induced by the specimens itself (heterogeneity, instabil-

ity, degradation, or ageing); and

(iii) few regression points (3...5) [5, 11, 12, 13, 14, 16, 22, 23, 36, 37, 38].

The destructive character and intrinsic heterogeneity of the specimen make

it quite impossible to achieve an accurate MU estimation in DST practice. The135

smaller regression point number greatly increases the sensitivity of the calibra-

tion line parameters to the small inaccuracy in assigning the weights to the

calibration points [8, 9]. In such a case, the hybrid strategies for the evaluation

of MU mentioned in EUROLAB Technical Reports [35, 39] and the works of

Nguyen et al. [6, 7, 8, 9] have led us to consider OLS as a provider of DST mea-140

surands values. Subsequently, to estimate uncertainties assigned to measurands

based on the uncertainty propagation law given in [35]. This approach gives rise

to a hybrid OLS, denoted HOLS, which makes the best compromise between the

characteristics of the DST and of the necessity for a parsimonious estimation of

the uncertainties of the slope and intercept. The HOLS is an improved version145

of the approach given by Nguyen [7, 8, 9], which is denoted GNA hereafter. In

this regard, a comparative study is addressed in this paper using 6 methods to

estimate the calibration line parameters in DST (β, φ, c, u(β), u(c)) i.e. OLS,
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GNA, ODR (orthogonal distance regression), WLOC, IWLS and HOLS.

The main novelty addressed in the paper consists in demonstrating that,150

for DST practice, the HOLS is the best compromise between the outcomes and

the costs. The HOLS takes into account all the contributors to the uncertainty

budget of β(φ) and c. The HOLS approach can cope with heteroscedasticity in

both variables. In order to apply the HOLS, a new and user-friendly algorithm

was developed in Excel. This algorithm is based on the matrix data organi-155

zation of the uncertainties, of the sensitivity coefficients and of the correlation

coefficients of the input quantities as is suggested in [35, 36, 37, 38, 40].

The HOLS approach solves the issue of the proper assessment of the un-

certainties of the DST measurands, provided that the covariance values of the

input quantities are available. In the case of insufficient information about the160

correlations among input data, the paper recommends the worst-case strategy

[35]. The paper argues for negative error correlations in DST measurements,

rather than positive ones.

Emphasis is given to situations where MU has to be used to evaluate the

improvement rate of soil reinforced with various materials (e. g. with polymeric165

fibers or chips, ashes, cement etc.) where the increase of soil shear strength

parameters can be small and it is necessary to prove that the increase is really

larger than the uncertainty.

2. Materials and methods

2.1. Materials170

The paper aims to implement a new HOLS approach for a better assessment

of the MU in DST. In this direction, the new approach was applied using the

previously published results [7, 8, 9] so as to have proper comparative data. In

this regard, the HOLS approach was applied to some DST results obtained in the

Geotechnical Laboratory, Department of Geotechnics, Faculty of Civil Engineer-175

ing, University of Zilina, Slovakia. A fully automatic large shear box apparatus

– SHEARMATIC 300 (Wykeham Farrance, CONTROLS Group, Milan, Italy)
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was used to perform the DSTs. The results obtained on some reinforced soils

with polyester fibers were considered as the MU plays a decisive role in assessing

the research progress in this field.180

2.2. Methods

To date, many linear regression methods have been developed to cope with

different point spreading and with heteroscedastic uncertainties of both coordi-

nates [7, 8, 9, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39]. These methods use a set

of n experimentally determined points in rectangular coordinates, generically185

denoted (xi, yi), i = 1...n and search for the best straight line passing through

them in term of slope (b) and intercept (a) i.e. y = a + bx. The methods can

be classified based on their principle as: least-squares structural model, least-

squares functional model, maximum likelihood, grouping, cumulant, moments

or equation error [31, 32].190

In this paper we address the representative least-squares structural mod-

els (OLS, IWLS, ODR) and the alternative WLOC [26, 33, 34, 37, 41]. The

outcomes of any linear regression method are the line parameters a and b and

their standard uncertainties, denoted s(a) and s(b) in most papers. To comply

with DST practice and with VIM recommendations, we adopted the following195

notations: σ for x, τ for y, c for a, β for b, u(c) for s(a) and u(β) for s(b)

[14, 22, 35, 42, 43].

The principles of the methods we studied and their main interesting features

for the paper goals are presented below.

2.2.1. OLS method200

OLS is the standard method applied in DST practice designed to give the

best straight line [5, 6, 7, 8, 9, 14, 15, 16, 22, 23, 44]:

τ = σ · β + c = σ · tan(φ) + c (1)

where β is the slope; φ is the angle of internal friction (o); c (kPa) is the cohesion

of soil; σ (kPa) is the applied normal stress and τ (kPa) is the corresponding

shear stress.
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According to OLS, the mathematical expression of β = tan(φ) and of c are:

β = tan(φ) =

∑n
i=1 (σi − σ̄) · (τi − τ̄)∑n

i=1 (σi − σ̄)
2 = rR ·

√∑n
i=1 (τi − τ̄)

2∑n
i=1 (σi − σ̄)

2 =

= rR · q

(2)

where n is the number of regression points (σi, τi), i = 1...n used in OLS pro-

cedure, rR is the correlation coefficient assigned to the regression line:

rR =

∑n
i=1 (σi − σ̄) · (τi − τ̄)√∑n

i=1 (σi − σ̄)
2 ·
∑n
i=1 (τi − τ̄)

2
(3)

and q is the spreading coefficient that is a measure of the dispersion values of

τs related to the dispersion of σs values:

q =

√∑n
i=1 (τi − τ̄)

2∑n
i=1 (σi − σ̄)

2 (4)

The cohesion is estimated as:

c = τ̄ − σ̄ · β (5)

where σ̄ denotes the mean value of σi, = 1...n, used in OLS procedure; the

same meaning applies for the upper line accent for τ , τ2 and σ2.205

According to the classical approach, the uncertainty assigned to β is calcu-

lated as [6, 14, 15, 16, 35]:

u(β)2 =
1

n− 2
·

∑n
i=1 ∆2

i∑n
i=1(xi − x̄)2

=
S2
o

Qσσ
(6)

where n is the number of points used in OLS regression, ∆i is the difference

between the measured value of τi and the calculated value for the ith point of

the regression line τfi i.e.

∆i = τfi − σi · β − c (7)

So is the constant uncertainty assigned to each τi:

S2
o =

∑n
i=1 ∆2

i

n− 2
(8)
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and

Qσσ =

n∑
i=1

(xi − x̄)2 (9)

Based on eq. 6, the squared u(β) can be expressed as:

u(β)2 =
1

n− 2
β2

(
1

r2
R

− 1

)
(10)

The relative standard uncertainty of the slope, uR(β), estimated in the frame

of OLS depends on n, but critically on rR:

uR(β) =
u(β)

β
=

√
1
r2R
− 1

√
n− 2

(11)

One of the major drawbacks of the OLS approach is the critical dependency

of uR(β) value on the rR value, even so it depends on n value. Fig. 1 depicts the

dependency of uR(β) on n value, but critically on rR value. As could be observed

in fig. 1, a value of uR(β) < 5% can be achieved only if rR > 0.997, whatever

n = 3...5. For rR < 0.98, uR(β) is greater than 10%, which is unacceptable for210

a professional DST measurement. Thus, eq. 11 and fig. 1 argue for increasing

the number of regression points in DST practice, as long as the compromise

between the decision risk and the economical reason is best.

In the case when rR ≈ ra = 0.9588 and n = 4, as STN 73 1030:1988 specifies,

a value of uR(β) > 20% is expected, which is quite unacceptable for a good DST215

laboratory practice. Polish standard allows deviation of experimental point up

to 25% related to the calculated one. These allowed deviations can decrease rR

below 0.95 and give rise to a value of uR(β) > 18%. ASTM D3080, ISO 17892-

10:2018 and other current DST standards do not impose limits (conditions) for

the deviations of the regression points, hence they allow for even larger uR(β).220

The uncertainty of c, u(c), is calculated based on 5 and on the so called

uncertainty propagation law [35]:

u(c)2 =
β2
(

1
r2R
− 1
)

n− 2

(
Qσσ
n

+ σ̄2

)
= u(β)2σ̄2 (12)

The u(c) value depends on the slope value, on the number of points n, on the

average σ2, on Qσσ, and again, it also depends critically on rR. Thus, in the OLS
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Figure 1: The uR(β) dependence on n and on r values

approach, the MU estimation of uR(β) values for the cases of fewer regression

points, 3...5, provides reasonable relative uncertainties (uR(β) < 10%) only if

rR > 0.99, which means that, in such a case, the raw regression points lie on or225

are very close to the regression line.

2.2.2. IWLS method

The MU estimation of β, φ and c based on the classical approach can be eas-

ily criticized as it neglects some sources of uncertainties, such as measurements

of σi, i = 1...n, and the covariance among (σi, σj), (τi, τj) for i 6= j. In this

regard, IWLS was analyzed for estimating the u(β) and u(c) values. The IWLS

was the first analyzed as it takes into account MU in both variables including

their error correlations. The equations of IWLS, given by York et al. [33], were

used to estimate β and c for the data set reported in [8]. The principle of IWLS

consists in minimizing the sum:

S =

n∑
i=1

wi (Ti − βΣi − c)2
(13)
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Table 1: Symbols of the quantities used in IWLS approach, their formulae and the associated

meanings [33]

Symbol Formula Meaning

Σ̄
∑n
i=1 wiΣi∑n
i=1 wi

Mean of the measured normal stresses

T̄
∑n
i=1 wiTi∑n
i=1 wi

Mean of the measured shear stresses

Ui Σi − Σ̄ Reduced experimental normal stress

Vi Ti − T̄ Reduced experimental shear stress

γi
wi

(
Ui

ω(Σi)
+ Vi

ω(Ti)

)
−

− (βUi + Vi)
ri√

ω(Σi)ω(Ti)

Adjusting factor used to calculate σi, τi and β

β
∑n
i=1 wiγiVi∑n
i=1 wiγiUi

Slope of the calibration line

c T̄ − βΣ̄ Intercept of the calibration line

σi Σ̄ + γi Adjusted normal stress

τi T̄ + βγi Adjusted experimental shear stress

σ̄i
∑n
i=1 wiσi∑n
i=1 wi

Mean of adjusted normal stresses

τ̄i
∑n
i=1 wiτi∑n
i=1 wi

Mean of adjusted experimental shear stresses

ui σi − σ̄ Reduced adjusted normal stresses

vi τi − τ̄ Reduced adjusted shear stresses

u(β) u(β)2 =
(∑n

i=1 wiu
2
i

)−1
Compound uncertainty assigned to the slope

u(c)
u(c)2 = (

∑n
i=1 wi)

−1
+

+σ̄2 · u(β)2
Compound uncertainty assigned to the intercept

where (Σi, Ti) are experimental values of the regression points, i = 1...n, and

wi, i = 1...n, are the weights of the points in the sum S, defined as:

wi =
ω(Σi)ω(Ti)

ω(Σi) + β2ω(Ti)− 2βri
√
ω(Σi)ω(Ti)

(14)

where ω(Σi) = u(Σi)
−2; ω(Ti) = u(Ti)

−2 and ri is the correlation coefficient

between errors in Σi and Ti.

The York‘s approach [33] makes use of the experimental point (Σi, Ti), and230

its corresponding point (σi, τi) that lies on the regression line, referred to as ad-

justed point. The estimation of the parameters provided by IWLS was performed

based on the formulae given in tab. 1. Also, the symbols of the quantities and

their significance are briefly given in tab. 1.
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The IWSL approach was implemented according to the algorithm given by235

York et al. [33]. Thus, β is estimated by iteration and, subsequently, c, u(β)

and u(c) were calculated using the quantities and formulae given in tab. 1.

2.2.3. WLOC method

The WLOC relies on the regression line τ = c+β ·σ that minimizes the sum

of the products of the weighted vertical and horizontal differences between the

measurement points and the line:

S =
n∑
i=1

ξi |σi − σ(τi)| · νi |τi − τ(σi)| (15)

where the (σi, τi), i = 1...nare the measurement points; ξi and νi are the weights

associated to σi and τi respectively.240

The weights ξi and νi applied to each measurement point i are defined as

ξi = u(σi)
−1 and νi = u(τi)

−1.

Eq. 15 can be written as:

S =

n∑
i=1

ξi

∣∣∣∣σi − τi − c
β

∣∣∣∣ · νi |τi − βσi − c| = n∑
i=1

ξiνi
(τi − βσi − c)2

|β|
(16)

which is similar to a weighted OLS approach.

The quantities used for calculation of the outputs of the regression line

(β, c, u(β), u(c)) based on WLOC approach, their associated formulae and245

meanings are given in tab. 2.

The minimization of errors in both X and Y directions are the major ad-

vantage of WLOC. The WLOC regression line passes through the centroid of

the data (x̄, ȳ), similar to the OLS and IWLS ones. WLOC provides analytical

solution for β, which is an important advantage compared to IWLS that needs250

an iterative approach [26, 33, 34].

2.2.4. Orthogonal Distance Regression (ODR) method

ODR is applied in two cases i.e. with error in dependent variable (τ) and

with errors in both variables e.g. (σ, τ). In the case of error in τ , ODR aims

13



Table 2: Symbols of the quantities used in WLOC approach, their formulae and the associated

meanings [26]

Symbol Formula Meaning

σ̄
∑n
i=1 ξiνiσi∑n
i=1 ξiνi

Weighted mean of the measured normal stresses

τ̄
∑n
i=1 ξiνiτi∑n
i=1 ξiνi

Weighted mean of the measured shear stresses

S(σ) S(σ)2 =
∑n
i=1 ξiνi(σi−σ̄)2∑n

i=1 ξiνi

Weighted standard deviation of the

experimental normal stress

S(τ) S(τ)2 =
∑n
i=1 ξiνi(τi−τ̄)2∑n

i=1 ξiνi

Weighted standard deviation of the

experimental shear stress

Q
∑n
i=1 ξiνi Sum of the point weights

β S(σ)
S(τ) Slope of the calibration line

c τ̄ − βσ̄ Intercept of the calibration line

u(β)
u(β)2 =

(
∂β
∂σi

)2
1
ξ2i

+

+
(
∂β
∂τi

)2
1
ν2
i

Combined uncertainty of the slope

u(c)
u(c)2 =

(
∂c
∂σi

)2
1
ξ2i

+

+
(
∂c
∂τi

)2
1
ν2
i

Combined uncertainty of the intercept

ci(β) ∂β
∂σi

= ξiνiβ
σ̄−σi
QS(σ)2 Sensitivity coefficient of u(β) related to σi

c̃i(β) ∂β
∂τi

= ξiνiβ
τ̄−τi
QS(τ)2 Sensitivity coefficient of u(β) related to τi

ci(c)
∂c
∂σi

= − ξiνiβQ
(

1 + σ̄(σi−σ̄)
S(σ)2

)
Sensitivity coefficient of u(c) related to σi

c̃i(c)
∂c
∂τi

= ξiνi
Q

(
1− σ̄(τi−τ̄)

S(c)2

)
Sensitivity coefficient of u(c) related to τi

14



to find the parameters of the best calibration line minimizing the sum of the

squared orthogonal offsets S(c, β) [45] i.e.

S(c, β) =

n∑
i=1

(
βσi + c− τi√

1 + β2

)2

(17)

where (σi, τi), i = 1...nare observed points.

The β is derived by minimizing S(c, β) in with respect to c and β, which

leads to:

b1,2 = B ±
√

1 +B2 (18)

where

B =
q2 − 1

2qr
(19)

where q and r have the previously mentioned significance. The cohesion, c, is

calculated based on eq. 5. The u(β) is derived as:

u(β) =
So√
Qσσ

·

√
(q2 − 1)

2
+ 4q2r2

2q2r2
(20)

where q, r, , So and Qσσ have the aforementioned significance.

The u(c) is calculated based on the uncertainty propagation law applied to255

eq. 5.

The main ODR approach with errors-in-both-variables is based on the hy-

pothesis that σi variables, i = 1...4, are affected by normally distributed errors

N(0, u(σi)), while τi is affected by N(0, u(τi)) errors. Also, it assumes that

u2(τi)/u
2(σi) = λ = constant for any i = 1...4 [46]. The literature does not260

provide clear evidence to sustain the normal distribution of the errors affecting

the DST measurands. The data addressed in the paper does not satisfy the

assumption u2(τi)/u
2(σi) = constant, therefore only ODR with error in depen-

dent variable was applied, aiming to compare the slope values given by OLS,

ODR and WLOC when they are applied on the same DST data set. Hence, the265

ODR approach with errors-in-both-variables is not addressed herein.
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2.3. HOLS method

2.3.1. HOLS principle

The HOLS is an improved version of the classical OLS i.e. the OLS re-

gression is kept unchanged, but the way in which the uncertainties of β and

c are estimated is changed. Thus, the HOLS approach takes into account the

uncertainties of all input quantities i.e. u(σi), u(τi), including the covariance

among them. The previous works of Nguyen et al. [7, 8, 9] have opened the

way in this direction, but HOLS addresses all the error correlation coefficients

of the input quantities. The HOLS assumes that the standard uncertainties of

the input data and their error correlation coefficients are a priori evaluated i.e.

u(σi), u(τi), r(σi, σj), r(σi, τj) and r(τi, τj), i 6= j, i = 1...n, j = 1...n are

known. Thus, based on the uncertainty propagation law, the uncertainty of the

slope can be expressed as [35, 39]:

u(β)2 =

n∑
i=1

(c(σi)u(σi))
2

+

n∑
i=1

(c(τi)u(τi))
2

+

+ 2 ·
n−1∑
i=1

n∑
j=i+1

c(σi)c(σj)r(σi, σj)u(σi)u(σj)+

+ 2 ·
n−1∑
i=1

n∑
j=i+1

c(τi)c(τj)r(τi, τj)u(τi)u(τj)+

+ 2 ·
n−1∑
i=1

n∑
j=i+1

c(σi)c(τj)r(σi, τj)u(σi)u(τj)

(21)

where c(σi) = ∂β
∂σi

is the sensitivity coefficient that expresses the rate of β

variation when σi varies; ibid c(τi) = ∂β
∂τi

; r(σi, σj), i = 1...n, j = 1...n, are270

the correlation coefficients assigned to the measurands denoted in the paren-

theses, that express the inter-dependency between σi and σj values. The same

meaning stands for r(σi, τj) and r(τi, τj), i 6= j. The use of eq. 21 ensures a

complete accounting of the slope uncertainty, provided a proper assessment of

the sensitivity and correlation coefficients has been performed.275

The value of a sensitivity coefficient is a measure of the contribution of an

influence factor to the uncertainty budget of the measurand as it multiplies
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the uncertainty of an individual contributor. Thus, the exact evaluation of the

sensitivity coefficients of the uncertainty budget of the slope is a must. In the

case of u(β) budget, there are two sets of sensitivity coefficients, those related

to σi, i = 1...n, denoted c(σi), and those related to τi, i = 1...n, denoted c(τi).

The mathematical expressions of the sensitivity coefficients assigned to β were

derived as:

c(σi) =
∂β

∂σi
=

∂

∂σi

(∑n
j=1 (σj − σ̄) (τj − τ̄)∑n

j=1 (σj − σ̄)
2

)

=
τi − τ̄
Qσσ

− 2 · Qστ
Qσσ

· σi − σ̄
Qσσ

=
τi − τ̄ − 2β(σi − σ̄)

Qσσ

(22)

c(τi) =
∂β

∂τi
=

∂

∂τi

(∑n
j=1 (σj − σ̄) (τj − τ̄)∑n

j=1 (σj − σ̄)
2

)
=
σi − σ̄
Qσσ

(23)

The sensitivity coefficients assigned to c, denoted c̃(σi), were calculated as:

c̃(σi) =
∂c

∂σi
=
∂ (τ̄ − σ̄ · β)

∂σi
= 0− 1

n
β − σ̄ τi − τ̄ − 2β (σi − σ̄)

Qσσ
(24)

while c̃(τi) were derived as:

c̃(τi) =
∂c

∂τi
=
∂ (τ̄ − σ̄ · β)

∂τi
=

1

n
− σ̄ σi − σ̄

Qσσ
(25)

The proper assessment of the correlation coefficients r(σi, σj) for i 6= j, r(τi, τj)

for i 6= j and for r(σi, τj) is the key problem of the adequate estimation of the

u(β) and u(c) values. The available literature on this topic does not provide

clear clues about the correlations of the errors of the DST measurands during

the measurement process. The EUROLAB Technical Report 1 [35] indicates280

that the main correlation come from the same calibration used in σ and τ mea-

surements. Another correlating factor in DST is the shear box.

A significant value of r(σi, σj) implies a relatively strong correlation among

the ways in which the influence factors behave. An experimental assessment

of the r(σi, σj) for DST is very costly, as it implies over 30 experiments. The285

assessment of r(τi, τj) and r(σi, τj) based on experimental data is unrealistic,

both from economic reasons and the impossibility to ensure identical specimens
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Table 3: The matrix of the error correlation coefficients

** σ1 σ2 σ3 σ4 τ1 τ2 τ3 τ4

σ1 1 s s s w w w w

σ2 s 1 s s w w w w

σ3 s s 1 s w w w w

σ4 s s s 1 w w w w

τ1 w w w w 1 t t t

τ2 w w w w t 1 t t

τ3 w w w w t t 1 t

τ4 w w w w t t t 1

for repetitive tests. In this context, the theoretical study of the dependency of

the slope uncertainty on r(σi, σj), r(τi, τj) and r(σi, τj) seems to be a less costly

way towards solving this difficult issue.290

In the DST practice, the measurements of the normal force (N) and of the

shear force (T ) are done with separate devices, hence it is assumed that the

r(σi, τj) have smaller values compared to that of r(σi, σj) and r(τi, τj) for i 6= j.

Accordingly, the following correlation matrix is proposed were s stands for all

r(σi, σj), t for r(τi, τj) and w for r(σi, τj) (tab. 3).295

The worst-case strategy is another way to solve the problem of r(σi, σj),

r(τi, τj) and r(σi, τj) values [35]. In this case, the MUs for different r(σi, σj),

r(τi, τj) and r(σi, τj) values are evaluated and the greatest value of MU coming

out from these calculations is considered as the representative value of MU.

2.3.2. HOLS algorithm implementation300

The matrix approaches given in [34, 35] have suggested a matrix-based al-

gorithm for the calculation of u(β). This calculation procedure was tailored for

complete assessment of the uncertainties of the DST outcomes. This matrix

procedure comprises 6 steps:

(1) Calculation of the primary uncertainty matrix u(xi)×u(xj), denoted PUM,305

where xi stand for σi and τi measurands, i = 1...n
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(2) Calculation of the sensitivity coefficients c(xi)×c(xj) matrix, denoted SCM;

(3) Setting up the error correlation r(xi, xj) matrix, denoted ECM;

(4) Calculation of the whole uncertainty matrix (WUM) by multiplying the

PUM, SCM and ECM matrices term by term i.e.

aij(WUM) = aij(PUM) ◦ aij(SCM) ◦ aij(ECM) (26)

where aij() are the elements of a matrix lying on the line i and column j

(5) Summing the elements of the WUM matrix i.e.

u2
c(β) =

n∑
i=1

n∑
j=1

aij(WUM) (27)

(6) Estimation of the expanded uncertainty310

The expanded uncertainty U with a given confidence level (usually 95%) is

estimated based on a probability density distribution function (PDF) attributed

to the measurand [18, 43, 44, 47, 48]. The assignment of a PDF to a measurand

based on a Pearson test is a difficult task as it involves at least 100 measure-

ments in repetitive or reproductive conditions [48, 49, 50]. On the other hand,

considering that each measurand involved in linear regression is affected by at

least 8 influence factors (soil type - fine-grained soil consistency index or coarse-

grained soils density index - load speed, temperature, degree of consolidation,

vibrations, equipment, human factors [3, 5, 6, 7, 8, 9, 10]), then the slope is

affected by at least 64 factors. According to the Central Limit Theorem [50], a

measurand whose uncertainty budget comprises more than 30 factors has a nor-

mal PDF. Hence, the PDF of the slope under consideration can be considered

of the Gauss-Laplace type i.e. N(β, u(β)). These considerations argue for a

coverage factor k = 2 to be used for the calculation of the expanded uncertainty

of the slope with a 95% confidence level i.e.

Uβ(95%) = 2 · u(β) (28)

The uncertainty of φ and u(φ) can be calculated based on eq. 27, but one

must take into account that the uncertainty range of φ is asymmetric. If one
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notes βo = tan(φo), then β belongs to the [βo − u(β); βo + u(β)] interval.

Consequently, φ varies in the [atan(βo − u(β)); atan(βo + u(β))] range. Thus,

the two components of u(φ) can be differentiated i.e.

u−(φ) = atan(βo)− atan(βo − u(β)) (29)

which is left-hand side of uc(φ), and

u+(φ) = atan(βo + u(β))− atan(βo) (30)

which is the right-hand side of u(φ).

The expanded uncertainty of φ should be split in the right hand interval

Uφ+(95%) = 2 · (atan(βo + u(β))− φo) and the left hand interval Uφ−(95%) =

2 · (φo − atan(βo − u(β))) that are adjoined through φo.

The algorithm for the assessment of the expanded uncertainty of the inter-315

cept is similar to that used for the slope except for the values of the sensitivity

coefficients. The PUM and ECM matrices used for uncertainty assessment of

the slope are used in the calculation of uncertainty of the intercept c. Only SCM

matrix has to be constructed for the calculation of the WUM matrix associated

to the intercept. The expanded uncertainty of the intercept is calculated using320

a coverage factor k = 2, based on the same considerations made in the case of

the expanded uncertainty of the slope.

3. Results and discussion

3.1. Comparative analyses of results provided by OLS, IWSL, WLOC, GNA,

ODR and HOLS approaches325

For a comparative analysis of the performance of the OLS, IWSL, WLOC,

GNA, ODR and HOLS approaches we have chosen a data set obtained in the

DST measurements carried on a CH soil specimen without fibers, marked as

CH0. These tests were performed in the Laboratory of the Department of

Geotechnics, Faculty of Civil Engineering, University of Zilina, Slovakia [8].330

The raw data published in [8] is given in tab. 4.
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Table 4: Raw data published by G. Nguyen et al. [8]

Normal Units MU Shear Units MU

stress (σ) [kPa] u(σi) stress (τ) [kPa] u(τi)

σ1 50.0 0.1580 τ1 56.8 0.3384

σ2 100.0 0.3160 τ2 106.1 0.6321

σ3 200.0 0.6321 τ3 151.7 0.9038

σ4 300.0 0.9481 τ4 267.4 1.5931

< σ >= 162.5 < τ >= 145.5

The regression lines obtained by OLS and by IWLS, for different error cor-

relations coefficient values are shown in fig. 2.

As can be observed in fig. 2, the IWLS ”adjusted points” are located much

further away from the experimental ones compared to the OLS ones. Even335

worse, the shape of the IWSL regression line is curved and its curvature strongly

depends on the rii values. The centroid coordinates given by IWLS (tab. 5) are

located in the lower part of the DST regression line, which is another drawback

of IWLS, because a linear regression performs better as the centroid lies in the

middle of the data, as is the case of OLS [52, 53]. The β values obtained by340

OLS differ slightly from those obtained by IWLS for r ≤ 0, but significantly

from those with r > 0.5 (tab. 5). The c values obtained by IWLS are signifi-

cantly higher than those obtained by OLS. Also, c monotonically increases as r

increases.

The OLS gives the greatest and the most unrealistic values for u(β) and345

u(c) compared to the other ones estimated based on GNA, HOLS and IWLS

approaches. Apparently, the power of IWSL consists in providing lower uncer-

tainties for both β and c parameters, at least 10 times smaller when comparing

to those given by GNA and HOLS. But, this fact is a matter of computation

and not a real finding. The DST practice shows that the uncertainties given by350

IWLS (tab. 5) are unrealistic [7, 8, 9, 10, 11]. Accordingly, the above findings

lead us to consider the IWLS method as inappropriate to be applied in DST
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Figure 2: Regression lines obtained by OLS and by IWLS, for different error correlation

coefficient values using the CH0 specimen data [8]

22



Table 5: Comparative values of the β, c, u(β) and u(c) obtained with OLS, GNA, HOLS and

IWLS approaches [8]

OLS GNA HOLS IWLS (rii)

-1.0 -0.95 -0.5 0.0 0.5 0.95 1.0

β 0.798 0.798 0.798 0.773 0.774 0.770 0.772 0.764 0.693 0.637

c 15.84 15.84 15.84 19.23 19.24 19.24 19.42 19.78 24.96 29.92

u(β) 0.105 0.015 0.014 0.0022 0.0022 0.0019 0.0016 0.0012 0.0005 0.0004

u(c) 19.81 0.77 0.68 0.211 0.208 0.184 0.152 0.112 0.061 0.058

< σ > 162.5 162.5 162.5 76.84 76.86 77.11 77.67 79.29 97.92 111.93

< τ > 145.55 145.55 145.55 78.64 78.65 78.84 79.23 80.39 92.75 101.31

Table 6: Comparative values of the β, c, u(β) and u(c) obtained with GNA [8], OLS, WLOC,

IWLS and ODR approaches

Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67

practice, while HOLS gives reliable results.

As the IWSL has been proven unfit for DST processing , the WLOC method

was tested on the same data, as to compare its results to the known values. The355

formulae given in 2 were used to evaluate the WLOC regression parameters.

The WLOC we used [26] does not account for error correlation, therefore it can

be considered similar to orthogonal distance regression (ODR), also known as

Deming regression method [53]. The comparative results provided by WLOC,

ODR and OLS regression approaches are given in fig. 3 and table 6.360

The OLS, WLOC and ODR approaches provided similar calibration lines

(fig. 3). This finding is supported by Mandel’s relationship [54]:

βODR =
βOLS

1− s2σi
s2exσ

(31)
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Figure 3: Comparative regression lines obtained by WLOC, ODR and OLS approaches

where βODR is the slope estimated by ODR approach, βOLS is the slope esti-

mated by OLS approach, s2
σi is the variance of a single σ, (σi), and s2

exσ is the

variance of the σ used for regression procedure.

According to eq. 31, the values of βODR and βOLS are very close as in

DST practice, the variance of a single σi value divided by the variance of the σ365

(Qσσ/(n− 1)) is less than 10−5 for i = 1...4.

The c values given by WLOC and IWLS differ significantly from that pro-

vided by OLS, GNA and HOLS. Thus, c values given by WLOC and IWLS

can be considered outliers. The WLOC approach behaves similar to IWLS one,

given much smaller uncertainties than OLS. By comparing the data in tab. 6,370

and based on fig. 3, we considered the HOLS as being able to provide reli-

able values for β and c, as well as the WLOC, ODR and IWLS ones. On the

other hand, the WLOC and IWLS methods failed in assessing reliable values

for u(β) and u(c). Also, IWLS and WLOC provided unrealistic centroids i.e.

(77.67, 79.23) [kPa], (IWLS for rii = 0), (75.97, 77.95) [kPa], (WLOC). These375

centroids lay far away from arithmetic centroid (162.5, 145.5) [kPa], nearby the

lower left side of the calibration line. In such cases, any variation in φ cause
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the points to shift upwards from the true calibration line. Therefore, WLOC is

considered unsuitable for MU estimation in DST, while HOLS provides reasons

to be further tested by comparison with GNA for its validation.380

3.2. Comparative analysis of GNA and HOLS outputs

The first comparison for HOLS validation used a piece of data published

by Nguyen in [7]. The N and T values were measured using calibrated force

transducers. The relative expanded uncertainty of the force transducer used for

N measurement, given for a coverage factor k = 2, URN (95%), takes values in385

the [0.12%, 0.47%] range, depending on the magnitude of measured force. For

the sake of risk minimization, it has been taken into consideration a maximum

value of the expanded uncertainty, i.e. uRN (σ) = 0.235%. The relative standard

uncertainties of the shear box dimension were estimated based on repeated mea-

surements and were found to have equal values uRa = uRb = 0.20%. The cali-390

bration protocol of the force transducer of the shear force specifies URT (95%) in

the [0.12%, 0.82%] range. For the same reason, the maximum value was consid-

ered for the estimation of u(τ) i.e. uRT = 0.41%. Also, an uncertainty of type

A (uA(τ) = 0.5%) was considered to account for the specimen heterogeneity.

The normal stress σ is calculated as:

σ =
N

A
=
N

ab
(32)

where N is the normal force in [kN ]; and a, b are shear box dimensions in [m].395

In the uncertainty propagation approach and hypothesizing that no corre-

lations occur among N , a and b, the uncertainty of σ can be expressed as:

u2(σ) =

(
∂σ

∂N

)2

· u2
N +

(
∂σ

∂a

)2

· u2
a +

(
∂σ

∂b

)2

· u2
b (33)

where uN , ua and ub are the standard uncertainties assigned to N , a and b,

respectively.

According to eq. 33, u(σ) can be expressed as:

u(σ) = σ
√
u2
RN + u2

Ra + u2
Rb (34)
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Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

where uRN , uRa and uRb are the relative standard uncertainties of type B of

the N , a and b measurands.

The uncertainty assigned to τ measurand is estimated in the same manner400

budget of τ . This uncertainty was considered to be of A type and was estimated

as relative standard uncertainty uRA(τ) = 0.5% [7]. Accordingly, the combined

uncertainty uc(τ) is calculated as:

u(τ) = τ
√
u2
RB + u2

Ra + u2
Rb + u2

RA (35)

The dependence of uc(σ) on σ and, also, that of uc(τ) on τ imply an increase

of MU as σ or/and τ increases, which determines a heteroscedastic behavior of

the slope uncertainty [55].

Based on eq. 34, the value of uc(σ1−4) were recalculated and compared to405

those posted in [7] (tab. 7). The uc(τ1−4) were recalculated based on eq. 35.

The exactness of the HOLS method depends, among others, on the accuracy

of the values of the sensitivity coefficient. Hence, the values of the sensitivity

coefficients were calculated based on the eqs. 22 - 25 and compared with those

posted in [7]. Even though the derivatives of c(xi) are not posted explicitly in [7],410

the similarity between the recalculated values and the posted ones validates the

exactness of the derivatives and the proper implementation of the computation

algorithm in Excel.

The shear strength parameters calculated based on HOLS (β = 0.45686, φ =

26

Table 7

as in the case of σ.

The heterogeneity of the tested soil is another contributor to the uncertainty

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67



Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

22.545o and c = 2.11kPa) are identical to those reported in [7]. The uncertain-415

ties of the calibration line calculated based on OLS are: u(β) = 0.0101, u(φ) =

0.48o and u(c) = 3.157kPa. A better picture of these uncertainties is given by

their relative uncertainties uR(β) ≈ 2.2%, uR(φ) ≈ 2.2% and uR(c) ≈ 14.3%.

Thus, OLS provides low quality of c as uRc(c) ≈ 14.3%. The GNA provided

u(φ) = 0.33o, u(c) = 1.26kPa [7] that are at least 50% lower than those given420

by OLS.

The algorithm described for the HOLS implementation was applied to es-

timate the uncertainties of the DST measurands based on the data given in

tab. 7. Thus, the PUM matrix has been constructed based on the values of the

standard uncertainties u(xi) given in tab. 8. These values were validated by425

comparison to the published ones [7].

The CSM matrix was elaborated in the same way as the PUM one and the

values of its elements are presented in 9. The values of the sensitivity coefficients

were validated by comparison to the published ones 7 [7].

The values of the error correlation coefficients r(σi, σj) for i 6= j, r(τi, τj)430

for i 6= j and for r(σi, τj) couldn‘t be exactly established, therefore the ECM

matrix has 3 degrees of freedom rσσ, rττ and rστ that can be adjusted based

on the laboratory evidences and on the operator expertise. For this case study,

the following values: rσσ = 0.2, rττ = 0.2 and rστ = 0.1 have been considered,

which means that a correlation of 20% has been taken into account for the435

measurements carried with the same device, whilst a value of 10% has been

27

Table 8:

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67



Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67

Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67

considered for the measurements carried with different devices (tab. 10).

Based on eq. 26 and on the values given in tables 8 - 10, the WUM matrix

was constructed, which contains all the components of the uncertainties that

affect the slope exactness (tab. 11).440

The compound uncertainty u(β) was calculated as the square root of the sum

of the WUM matrix elements and the obtained value was u(β) = 0.00482 which

Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67
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Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67

is approximately 2 times smaller than that obtained based on OLS approach.

The corresponding u(φ) value to u(β) = 0.00482 is u(φ) = 0.458o, which is

about 1.5 times greater than that reported u(φ) = 0.33o [7]. This difference can445

be ascribed to the improper values assigned to r(σi, τj), i 6= j.

The standard uncertainty of the cohesion, u(c), was estimated using the

same algorithm as for u(β), but using the CSM given in tab. 12, instead of that

given in tab. 9.

The compound uncertainty u(c) was calculated as the square root of the450

sum of the elements of the WUM assigned to c and the obtained value was

u(c) = 0.997kPa which is approximately 3 times smaller than that calculated

based on the OLS approach (u(c) = 3.156kPa), but it is close to that reported

in [7] (u(c) = 1.26kPa).

The above case of rσσ = 0.2, rττ = 0.2 and rστ = 0.1 should be seen as a455

matter of exemplification (i.e. how the calculation algorithm works), but there

is no pertinent evidence for the rσσ = 0.2, rττ = 0.2 and rστ = 0.1 values. As a

consequence, to avoid underestimating the u(β) values, and implicitly the u(φ)

value, an exploration of the dependency of u(φ) value on rσσ, rττ and rστ has

been conducted as it is shown in tab. 13.460

According to tab. 13, the u(φ) value decreases monotonically as the val-

ues of rσσ, rττ and rστ increase from -1 to +1. Any negative correlation in

rσσ, rττ and rστ gives rise to a u(φ) value greater than that corresponding to

rσσ = rττ = rστ = 0. The value u(φ) = 0.33o [7] is close to that given in the
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Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67

case of rσσ = rττ = 0.7 and rστ = 0.5. On the other hand, Gillard [55] had

shown (eq. 36) that for positive β a negative covariance should be expected in

DST.

cov(σi, τi) = −β · u(σi)
2 (36)

where (σi, τi) is a point of the regression procedure (i = 1...4) and β is the

estimated slope.

Eq. 36 allows us to estimate rσiτi as:

rσiτi =
−β · u(σi)

2

u(σi)u(τi)
= −β · λi (37)

where λi = u(σi)/u(τi) is a known experimental positive constant.

The cov(σi, τj), for i 6= j, are very difficult to be quantified; the same is true

in the case of cov(σi, σj), for i 6= j. On the other hand, the DST measurements465

for i and j points, i 6= j, are done separately, therefore it is reasonable to assume

that there is a negligible correlation between σi and σj , σi and τj and, τi and

τj caused by measurement processes. In such a case, only rσiτi , i = 1...4, are

negative and the others are null. If it is assumed that rσiτi has a constant value

independent on i, i = 1...4, and the others covariance are negligible, then the470

values of u(φ) (tab. 14) do not differ too much from those given in tab. 13.

The worst case strategy, based on above data, implies totally negative error

correlations. The difference between considering a total correlation (rσσ = rττ =

rστ = −1) and neglecting error correlation (rσσ = rττ = rστ = 0) consists

in the underestimation of the u(φ) value with ≈ 28% compared to the case475
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Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67

rσσ = rττ = rστ = −1, and with ≈ 24% compared to the case rσσ = rττ = 0,

rσiτj = 0, for i 6= j and rσiτi = −1 for i = 1...4. The case where rσσ = rττ = 0,

rσiτj = 0, for i 6= j and rσiτi = −1 for i = 1...4 yields an underestimation of the

u(φ) value of ≈ 4% compared with the rσσ = rττ = rστ = −1 case.

Adopting The worst case strategy and a coverage factor k = 2, the expanded480

uncertainty assigned to φ is Uφ(95%) ≈ 1.4o i.e. URφ(95%) ≈ 6% which is a

reasonable one.

The u(c) values behave in the same way as u(φ), as its value reaches a

maximum for the case where rσσ = rττ = rστ = −1 (u(c) = 1.53kPa), a

minimum for rσσ = rττ = rστ = +1 (u(c) = 0.56kPa) and it takes a middle485

value for rσσ = rττ = rστ = 0 (u(c) = 1.09kPa). The case where rσσ = rττ = 0,

rσiτj = 0, for i 6= j and rσiτi = −1 for i = 1...4 give a maximum u(c) = 1.44kPa.

Adopting The worst case strategy and a coverage factor k = 2, the expanded

uncertainty assigned to c is Uc(95%) ≈ 3.1kPa i.e. URc(95%) ≈ 14% which is

comparable to those reported in [10, 11].490

The quality of φ and c results, provided by HOLS for the case of CH soil,

can be considered of medium level, as URφ(95%) ≈ 6% while URc(95%) ≈ 14%.

The HOLS provided greater MU values of the DST measurands given in

[7] compared to GNA approach, but similar Uφ(95%) and two times smaller

Uc(95%) compare to OLS (tab. 15).495

Table 15 shows that HOLS yields the most reliable MUs on the same DST

data.
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Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67

3.3. Comparative analysis of the DST data obtained on soil reinforces with

Polyester Fibers [8]

This section aims to underline the importance of the proper estimation of500

MU when one has to compare DST outcomes in order to establish the best

solution for soil reinforcement with polyester fibers. In this regard, some data

published in [8] were re-evaluated, but mainly the uncertainties assigned to the

DST outcomes carried on soil from Čaradice, Slovakia. This soil was reinforced

with TEXZEM PES 200 polyester fibers from Bonar Geosynthetics of 70mm505

in length, by 0.5% and 1.0% (wt.). DST were carried out in accordance with

the Slovakian standard [22] using SHEARMATIC 300 equipment (Wykeham

Farrance, CONTROLS Group, Milan, Italy). The shear box size was 0.3×0.3m.

Specimens with and without polyester fibers were tested at normal stresses: 50,

100, 200 and 300 kPa.510

According to the calibration protocol, the value of the relative standard un-

certainty of the force transducer of normal force uRN is in the [0.022%, 0.141%]

range depending on the magnitude of the force measured. For the range of nor-

mal forces applied during the tests, a standard relative uncertainty of 0.141%

was used. Also, the relative standard uncertainty of the shear force transducer,515

uRT , was in the [0.025%, 0.163%] range depending on the magnitude of the

force measured. For the range of shear forces applied in the test, a standard

uncertainty of uB,τi = 0.158% will be used. Supplementary, a relative uncer-

tainty of type A (uRA(τ) = 0.5%) was considered to account for the specimen
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Approach /

Parameter
OLS GNA HOLS WLOC

IWLS

rii = 0.0
ODR

β 0.798 0.798 0.798 0.776 0.770 0.809

c [kPa] 15.84 15.84 15.84 18.96 19.33 14.01

u(β) 0.105 0.015 0.014 0.002 0.0016 0.020

u(c) [kPa] 19.81 0.77 0.68 0.16 0.15 10.67

heterogeneity.520

The relative standard uncertainty of the shear box dimension was considered

as uRa = 0.2% (for dimension a); a similar value uRb = 0.2% was used for

dimension b.

The combined uncertainties of the σi, i = 1...4, were calculated using eq. 34

and the relative uncertainties assigned to normal stresses. The same procedure525

was used for the combined uncertainties of the τi, i = 1...4, but based on eq.

35 . The reported data [8] and the re-evaluated one are given in tab. 16.

The expanded uncertainties of φ and of c with 95% confidence level (k = 2)

calculated by HOLS were considered for 3 representative cases i.e. neglecting all

error correlations, (denoted H00), the worst case for correlation of the individual530

measurement r(σi, τi) = −1, i = 1...4, (H1̄0), and the worst case for total

correlation of errors (H1̄1̄). The idea behind this option relies on the evidences

that H00 is frequently encountered in DST, H1̄0 seems being the most realistic

DST case, whilst H1̄1̄ is truly the worst case for MU in HOLS approach.

The analysis carried on the data published in [8] has shown that the reported535

values of the DST parameters (φ, c) for all 6 samples under consideration (tab.

16) are identical for φ and for c. The reported values of the expanded uncertain-

ties of φs and cs [8] are underestimated by the GNA approach compared to the

HOLS ones, especially for the H1̄0 and H1̄1̄ cases. The GNA approach provides

similar values for URφ(95%) and URc(95%) compared to the HOLS ones for the540

H00 cases. These findings can be easily explained, considering that GNA makes
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use of positive error correlation coefficients. If the worst case is applied for MU

estimation for the sake of risk mitigation in decision making i.e. H1̄1̄, then the

cases of CS and CH specimens can be disjointed. Thus, the variations of the

DST parameters of CS specimens can be supported as the difference of their545

values exceeds the sum of their assigned expanded uncertainties, but in the case

of CH samples the variations cannot be stated, as the associated coverage inter-

vals to φs overlap. This finding highlights the importance of the parsimonious

estimation of MU when needed to assess the research progress (improvement

rate of soil strength expected by the researches).550

4. Conclusions

The uncertainty estimation of the DST results is of great demand for geotech-

nical practice, but the current DST standards do not address this issue. Fur-

thermore, DST standards prescribe OLS, although both DST measurands, i.e.

normal stress and shear stress, are affected by correlated uncertainties.555

The paper demonstrates that OLS, IWLS and WLOC approaches are not

suitable for estimating Mus in DST practics, as OLS largely overestimates MUs,

while IWLS and WLOC strongly underestimate them. The HOLS is a holistic

development of the GNA approach. Unlike GNA approach, HOLS takes into

account all the contributions to the uncertainty budget of the DST. HOLS deals560

properly with homoscedastic data, but most importantly, with heteroscedastic

DST data.

The algorithm for HOLS implementation relies on a matrix data processing,

was developed in Excel and it was validated by inter-comparison between pub-

lished data [7, 8] and data obtained with the HOLS approach. The proposed565

algorithm can be implemented easily in Excel following the steps presented in

the paper, but also in other commercial software as MATLAB, Mathcad etc.

Further researches are needed for accurate estimation of the correlation am-

plitudes among the entry quantities (σi, τi) in DST. Combined experimental

observations and Monte Carlo simulation are foreseen as one route to solve this570

34



issue. The other route can be the top-down approach which avoids assessing

the individual contributions, but accounting them at bulk level [39, 56]. Until

then, the worst case strategy remains the only way to mitigate the risk of using

DST results in geotechnical activity.
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